1,663 research outputs found

    FPGA-based operational concept and payload data processing for the Flying Laptop satellite

    Get PDF
    Flying Laptop is the first small satellite developed by the Institute of Space Systems at the Universität Stuttgart. It is a test bed for an on-board computer with a reconfigurable, redundant and self-controlling high computational ability based on the field pro- grammable gate arrays (FPGAs). This Technical Note presents the operational concept and the on-board payload data processing of the satellite. The designed operational concept of Flying Laptop enables the achievement of mission goals such as technical demonstration, scientific Earth observation, and the payload data processing methods. All these capabilities expand its scientific usage and enable new possibilities for real-time applications. Its hierarchical architecture of the operational modes of subsys- tems and modules are developed in a state-machine diagram and tested by means of MathWorks Simulink-/Stateflow Toolbox. Furthermore, the concept of the on-board payload data processing and its implementation and possible applications are described

    Dealing with Uncertainties in Asteroid Deflection Demonstration Missions: NEOTwIST

    Full text link
    Deflection missions to near-Earth asteroids will encounter non-negligible uncertainties in the physical and orbital parameters of the target object. In order to reliably assess future impact threat mitigation operations such uncertainties have to be quantified and incorporated into the mission design. The implementation of deflection demonstration missions offers the great opportunity to test our current understanding of deflection relevant uncertainties and their consequences, e.g., regarding kinetic impacts on asteroid surfaces. In this contribution, we discuss the role of uncertainties in the NEOTwIST asteroid deflection demonstration concept, a low-cost kinetic impactor design elaborated in the framework of the NEOShield project. The aim of NEOTwIST is to change the spin state of a known and well characterized near-Earth object, in this case the asteroid (25143) Itokawa. Fast events such as the production of the impact crater and ejecta are studied via cube-sat chasers and a flyby vehicle. Long term changes, for instance, in the asteroid's spin and orbit, can be assessed using ground based observations. We find that such a mission can indeed provide valuable constraints on mitigation relevant parameters. Furthermore, the here proposed kinetic impact scenarios can be implemented within the next two decades without threatening Earth's safety.Comment: Accepted for publication in the proceedings of the IAUS 318 - Asteroids: New Observations, New Models, held at the IAU General Assembly in Honolulu, Hawaii, USA 201

    Symbolic execution as a basis for termination analysis

    Full text link
    Program termination is a relevant property that has been extensively studied in the context of many different formalisms and programming languages. Traditional approaches to proving termination are usually based on inspecting the source code. Recently, a new semantics-based approach has emerged, which typically follows a two-stage scheme: first, a finite data structure representing the computation space of the program is built; then, termination is analyzed by inspecting the transitions in this data structure using traditional, syntax-based techniques. Unfortunately, this approach is still specific to a programming language and semantics. In this work, we present instead a general, high-level framework that follows the semanticsbased approach to proving termination. In particular, we focus on the first stage and advocate the use of symbolic execution, together with appropriate subsumption and abstraction operators, for producing a finite representation of the computations of a program. Hopefully, this higher level approach will provide useful insights for designing new semantics-based termination tools for particular programming languages. © 2015 Elsevier B.V. All rights reserved.This work has been partially supported by the EU (FEDER) and the Spanish Ministerio de Economia y Competitividad (Secretaria de Estado de Investigacion, Desarrollo e Innovacion) under grant TIN2013-44742-C4-1-R and by the Generalitat Valenciana under grant PROMETEO/2011/052.Vidal Oriola, GF. (2015). Symbolic execution as a basis for termination analysis. Science of Computer Programming. 102:142-157. https://doi.org/10.1016/j.scico.2015.01.007S14215710

    Proving termination and memory safety for programs with Pointer Arithmetic

    Get PDF
    Proving termination automatically for programs with explicit pointer arithmetic is still an open problem. To close this gap, we introduce a novel abstract domain that can track allocated memory in detail. We use it to automatically construct a symbolic execution graph that represents all possible runs of the program and that can be used to prove memory safety. This graph is then transformed into an integer transition system, whose termination can be proved by standard techniques. We implemented this approach in the automated termination prover AProVE and demonstrate its capability of analyzing C programs with pointer arithmetic that existing tools cannot handle

    ORIGO: A mission concept to challenge planetesimal formation theories

    Get PDF
    Comets are generally considered among the most pristine objects in our Solar System. There have thus been significant efforts to understand these bodies. During the past decades, we have seen significant progress in our theoretical understanding of planetesimal/cometesimals (the precursors of comets) formation. Recent space missions—such as ESA’s Rosetta mission to comet 67P/Churyumov-Gerasimenko—have provided observations claimed by proponents of different comet formation theories to validate their scenarios. Yet, no single formation paradigm could be definitively proven. Given the importance of understanding how the first bodies in our Solar System formed, we propose a dedicated mission to address this issue. ORIGO will deliver a lander to the surface of a cometary nucleus where it will characterise the first five m of the subsurface. With remote sensing instruments and the deployment of payload into a borehole, we will be able to study the physico-chemical structure of ancient, unmodified material. The mission has been designed to fit into the ESA M-class mission budget

    Origo - an ESA M-class mission proposal to challenge planetesimal formation theories.

    Get PDF
    The Origo mission was submitted in response to the 2021 call for a Medium-size mission opportunity in ESA's Science Programme.The goal of Origo is to inform and challenge planetesimal formation theories. Understanding how planetesimals form in protoplanetary disks is arguably one of the biggest open questions in planetary science. To this end, it is indispensable to collect ground truths about the physico-chemical structure of the most pristine and undisturbed material available in our Solar System. Origo seeks to resolve the question of whether this icy material can still be found and thoroughly analysed in the sub-surface of comets.Specifically, Origo aims to address the following immediate science questions:Were cometesimals formed by distinct building blocks such as e.g. "pebbles", hierarchical sub-units, or fractal distributions? How did refractory and volatile materials come together during planetesimal growth e.g. did icy and refractory grains grow separately and come together later, or did refractory grains serve as condensation nuclei for volatiles? Did the building blocks of planetesimals all form in the vicinity of each other, or was there significant mixing of material within the protoplanetary disk? To answer these questions Origo will deliver a lander to a comet where we will characterise the first five meters of the subsurface with a combination of remote-sensing and payloads lowered into a borehole. Our instruments will examine the small scale physico-chemical structure. This approach will allow us to address the following objectives, each of which informs the respective science question: Reveal the existence of building blocks of a cometary nucleus from the (sub-)micron to metre scale by exploring unmodified material. Determine the physical structure of these building blocks, in particular, the size distribution of components and how refractory and volatile constituents are mixed and/or coupled. Characterise the composition of the building blocks by identifying and quantifying the major ices and refractory components. Over the past decade, significant theoretical advances have been achieved in working out possible planetesimal formation scenarios.The two leading hypotheses for how planetesimals formed from sub-micron dust and ice particles in the proto-planetary nebula can be classified into two groups:the hierarchical accretion of dust and ice grains to form planetesimals; and the growth of so-called pebbles, which are then brought to gentle gravitational collapse to form larger bodies by e.g. the streaming instability. These competing theories only have indirect proof from observations.Direct evidence, i.e. ground truths, about the building blocks of planetesimals remain hidden. Origo would challenge these theories by examining the physico-chemical structure of the most pristine material available in our Solar System. Though the proposal was not retained for step 2 we present our concept for community discussion

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Search for direct stau production in events with two hadronic tau-leptons in root s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of the supersymmetric partners ofτ-leptons (staus) in final stateswith two hadronically decayingτ-leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of139fb−1, recorded with the ATLAS detector at the LargeHadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected StandardModel background is observed. Limits are derived in scenarios of direct production of stau pairs with eachstau decaying into the stable lightest neutralino and oneτ-lepton in simplified models where the two staumass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidencelevel for a massless lightest neutralino
    corecore